• Barajar
    Activar
    Desactivar
  • Alphabetizar
    Activar
    Desactivar
  • Frente Primero
    Activar
    Desactivar
  • Ambos lados
    Activar
    Desactivar
  • Leer
    Activar
    Desactivar
Leyendo...
Frente

Cómo estudiar sus tarjetas

Teclas de Derecha/Izquierda: Navegar entre tarjetas.tecla derechatecla izquierda

Teclas Arriba/Abajo: Colvea la carta entre frente y dorso.tecla abajotecla arriba

Tecla H: Muestra pista (3er lado).tecla h

Tecla N: Lea el texto en voz.tecla n

image

Boton play

image

Boton play

image

Progreso

1/16

Click para voltear

16 Cartas en este set

  • Frente
  • Atrás
  • 3er lado (pista)
Si en un colectivo E son el 90%, cuál es la probabilidad de elegir un individuo al azar y que este sea E
La probabilidad es el 90%, pero esta frase no evita la incertidumbre respecto a cómo será el individuo. Conociendo esto seguimos sin saber el resultado
A que hace referencia la probabilidad del 90%
Se refiere a lo que ocurre cuando un suceso sucede si se repite millones de veces con reposición.
Indica que si se repite millones de veces, el evento se pr sentará muy aproximadamente a 90 de cada 100
Sobre qué base se apoya la probabilidad
Ley de la regularidad de las grandes series estadisticas, también llamada Ley empírica del azar: al estudiar un número grande de eventos, la proporción con la que ocurre si todo se mantiene constante es muy estable
Diferencia entre proporción y probabilidad
Proporción: es un hecho físicamente evaluable contando el número de individuos.
Probabilidad: número de veces que se repite un evento cuando se genera al azar y se repite millones de veces

la proporción puede ser del 60% y la probabilidad del 74%, Dada por las carácteristica que facilitan que un evento se prrsente
Ley de multiplicación de probabilidades
la probabilidad de ocurrencia de dos o más eventos esdasticamente independientes es igual al producto de sus probabilidades individuales
Aplicación práctica del teorema de Bayes en estudios clínicos
Evaluación de test diagnósticos
Siendo A el test y B la enfermedad: cómo se representa sensibilidad
Sensibilidad = A l B
Condiciones para aplicar el Teorema de Bayes
• Conocer la DF marginal de una variable y la DF de la otra variable condicionada

• Se desea conocer la DF marginal de la otra variable y la DF condicionada de la primera variable condicionada a la segunda
Fórmula de teorema de Bayes
p(AlB) = {P(A) x p(BlA)} / P(B)

p(BlA) = {P(B) x p(AlB)} / P(A)
Que implica AlB
Probabilidad de que ocurra A si ha ocurrido B
Define sensibilidad
porcentaje de resultados positivos entre los que realmente están enfermos
Define especificidad
porcentaje de resultados negativos entre los que no tienen la enfermedad
Define Falso positivo
FR de test positivo entre los sanos
AlB-
1-especificidad
A test y B enfermedad
Define Falso negativo
FR de test negativos entre los enfermos

A-lB
1- sensibilidad
Define: valor predictivo positivo
FR de enfermos entre los que dieron test positivo

BlA
Define valor predictivo negativo
FR de sanos entre los que dieron test Negativo

B-lA-